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Likelihood*
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Technology, Taiwan, University of Wisconsin, Madison, and Feng
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Abstract

A method that blends tree-structured nonparametric regression
with classical maximum likelihood is used in a generalized regression
setting. The function estimates constructed are piecewise polynomials
and are produced together with decision trees containing useful infor-
mation on the regressors. Fitting is carried out by applying maximum
likelihood estimation to subsets of the data, where the subsets are
selected via recursive partitioning and cross-validation pruning. Ex-
amples of Poisson and logistic regression trees are given to illustrate

the method applied to count and binary response data. Large-sample
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properties of the estimates are derived under appropriate regularity
conditions.
Key words and phrases: Generalized linear models. Anscombe resid-

ual, pseudo residual, Vapnik-Chervonenkis class, consistency

1 Introduction: Motivation and main ideas

Consider a general regression set up in which a real-valued response Y is
related to a real or a vector-valued regressor X through an appropriate prob-
ability model. which characterizes the nature of the dependence of Y on X.
To be more specific. let us denote the conditional density or mass function
of Y given X = r as f{yl|g(r)}, where the form of f is known but g is an un-
known function, which happens to be the parameter of interest here. There
are plenty of examples that arise in practice and fit into this structure. Some
well-known cases, which have received extensive attention in the literature,
are the logistic regression model (when the response Y is binary. and g(r)
is the ~logit” of the conditional probability parameter given X = r). the
Poisson regression model (when Y is a nonnegative integer-valued random
variable with a Poisson distribution. and g(r) is related to its unknown con-
ditional mean given X = r), and more generally. models that are popularly
called generalized linear models { GLM) (Nelder and Wedderburn 1972. Mc-
Cullagh and Nelder 1989), where g is related to the link function. On the
other hand, g(z) may be the unknown location parameter associated with
the conditional distribution of }" given .\' = z. In other words, ¥ may sat-
isfy the equation Y = g(X) + ¢, where the conditional distribution of ¢ can
be normal. Cauchy or exponential power (see. e.g.. Box and Tiao 1973) with

center at zero.
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We are interested in the situation where no finite-dimensional parametric
model is imposed on g, and 1t is assumed to be a smooth function with an
appropriate degree of smoothness. Nonparametric estimation of the func-
tional parameter g has been explored by Cox and O'Sullivan 119901, Gu
(1990). Hastie and Tibshirani {19%6. 1990), O'Sullivan. Yandell and Ravnor
(1986). Staniswalis (19%9), Stone (1986, 1991a). and others, who considered
various nonparametric smoothers when the conditional distribution of the
response given the regressor is assumed to have a known shape (e.g.. the
conditional distribution may possess a GLM-type exponential structure).

In the case of the usual regression set up, where ¥ = g(X) + ¢ with
E(€)X) = 0. several attempts have been made to estimate g by recursively
partitioning the regressor space and then constructing a regression estimate
in each partition using the method of least squares. Important developments
along this direction are AID (Sonquist 1970, Sonquist, Baker and Morgan
1973), CART (Breiman, Friedman. Olshen and Stone 1984) and SUPPORT
(Chaudhuri. Huang, Loh and Yao 1993). The purpose of this article is to
explore recursive partitioning algorithms and related likelihood-based non-
parametric function estimates in a generalized regression setting.

Two significant advantages enjoyed by recursive partitioning and tree-

structured regression are:

o the decision tree as well as the intermediate and terminal nodes created
by the partitioning algorithm may provide valuable information about

the regressors. and

o the estimates constructed in each terminal node has a simple functional

form. This permits their statistical properties to be studied and lends

Tuly 25. 1993
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insight into the nature of the relationship between the response and

the regressors within a node.

Besides. the adaptive nature of a recursive partitioning algorithm allows
varying degrees of smoothing over the regressor space so that the terminal
nodes may have variable sizes in terms of numbers of observations contained
in those nodes as well as the diameters of the sets in the regressor space to
which they correspond. The main motivation behind such adaptive variable
smoothing is to take care of heteroscedasticity as well as the possibility that
the amount of smoothness in the functional parameter ¢ may be different
in different parts of the regressor space. This is an improvement over most
of the earlier nonparametric estimation techniques in generalized regression,
which concentrated either on adaptive but fixed smoothing (i.e.. using a
smoothing parameter whose value is constant over the entire regressor space)
or on deterministic smoothing.

The general methodology explored in this paper consists of two funda-

mental steps.

1. Observations are recursively and adaptively divided into subsets so
that the unknown function g can be satisfactorily approximated by a
simple function (e.g.. a constant, a linear function or a polvnomial of

suitable degree) in each subset.

2. The function g is estimated from the data in each terminal node by a
polynomial using maximum likelihood. Estimates of the derivatives of

g are given by the corresponding derivatives of the fitted polynomial.

The recursive partitioning algorithm used to create the terminal nodes and

the nature of the function fitted will depend on the problem. In Sections 2
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and 3, we give some algorithms and examples for illustration (see also Ciampi
and Thiffault (19%89)).

Adaptive recursive partitioning algorithms construct random subsets of
the regressor space which form the terminal nodes. \ serious technical bar-
rier in studyving the analvtic properties of the likelihood-based function esti-
mates is the randomness in these subsets. Our key tool in coping with this
situation is a well-known combinatorial result in Vapnik and Chervonenkis
(1971). In Section 4. we investigate the large sample statistical properties
of the estimates that are constructed via recursive partitioning of the re-
gressor space followed by maximum likelihood estimation of g by piecewise
polynomials. We will consider a very general setting to get good theoretical
insights into the performance of the estimates, and to derive some technical
results under mild regularity conditions.

Friedman's (1991) MARS combines spline fitting with recursive parti-
tioning to produce continuous function estimates. The complexity of the
estimates makes interpretation difficult and theoretical analysis of their
statistical properties extremely challenging. In the SUPPORT method of
Chaudhuri et al. (1993). a weighted averaging technique is used to combine
piecewise-polynomial fits into a smooth one. An identical technique can
be used here to create a smooth estimate from a discontinuous piecewise-
polynomial estimate without a'tering the asymptotic properties of the orig-
inal estimate. Friedman (1991) gives some proposals for applying MARS to
logistic regression problems. and Buja. Duffy, Hastie and Tibshirani (1991)
and Stone (1991b) comment on possible extensions and modifications of
MARS to GLM-type exponential response problems. The methodology pre-

sented and analyzed in this article has a clear edge over all these proposals
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because of its simplicity and more direct approach. [t is hoped that this
will make it more appealing to users. It delinitely helps in interpreting the

estimates and in studying their statistical properties.

2 Algorithms for Poisson and logistic regression

trees

Algorithms for fitting Poisson and logistic regression trees are briefly de-

scribed in this section. Each algorithm has three main components. namely:

1. A method to select the variable and the splitting value to be used at

a partition.
2. A method to determine the size of the tree.
3. A method to fit a model to each terminal node.

There are many reasonable solutions for each component. and several of
them are described and implemented in FORTRAN 77 in Lo (1993) and
Yang {1993). In the examples in this paper, two-sample tests for means and
variances are used to find splitting variables { Huang 1989, Chaudhuri et al.
1993). CART’s method of cost-complexity pruning (with cost defined as
deviance) is used to determine the size of a tree. Finally, a loglinear model
or a linear logistic regression model is fitted to each terminal node. We begin

with Poisson regression.

2.1 Poisson regression

The following sequence of computations is performed at each node t.

Julv 25. 1993
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. A Poisson loglinear model is fitted to the data in t.

2. Let m, = EY, and let 1, be its value estimated from the model. Also

let y, denote the observed value of ¥,. The adjusted Anscombe residual

(Pierce and Schafer 19%86)
ro= {4 - 00— (19 P} (2/3)m, %)

is calculated for each y, in ¢. (Yang. 1993. discusses the advantages of
this residual over unadjusted Anscombe, Pearson. and deviance resid-

uals.)

. Observations with nonnegative r, are classified as belonging to Group

1 and the others to Group 2.

. Two-sample t-statistics to test for differences in means and variances
between the two groups along each covariate axis are computed. (The
latter test is Levene's, 1960, test: see Chaudhuri et al. (1993).) The
rationale is that if the model fits adequately, the residuals should look
like noise and there would be little difference between the means and
variances of the two groups. Otherwise, one or more of the test statis-
tics may be expected to be large. This method has proven to be ef-
fective for tree-structured classification (Loh and Vanichsetakul 1988)
and regression with censored data (Ahn and Loh 1994). Its principal
advantage over the exhaustive search strategies of AID and CART is

computational speed.

. The covariate used to split the node is the one that possesses the most

significant t-statistic among all the tests.
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6. The cut-point for the selected covariate is the average of the two group
means along that covariate. Observations with covariate values less
’
than or equal to the cut-point are channeled to the left <ubnode and
the remainder to the right subnode
T. After an overly large tree is constructed, the nodes are pruned back fol-
lowing CART's pruning method with cost-complexity defined as resid- '
ual deviance plus a constant times the number of terminal nodes of
the tree. As in CART, 10-fold cross-validation is used to determine
the constant and hence the amount of pruning. )
8. The final tree is the one that has the smallest cross-validation estimate
of deviance.
. : » @
2.2 Logistic regression
Because of the 0-1 nature of the Y -variable in logistic regression applications.
the definition of residuals in the preceding algorithm needs to be modified as
follows. Otherwise, the algorithm is similar to that for Poisson regression.
1. The Y-values are first smoothed using a weighted average (similar
to the LOWESS method of Cleveland (1979)) to give a preliminary
estimate p; of the probability p, = P(Y, = 1). This estimate is called ’
a “pseudo-observation.”
2. A second estimate p; of this probability from a logistic regression model
fitted to the node is obtained. )
3. The “pseudo-residual.” r; = {p; - p,)/@(p]). is computed for each
observation. Here &(p]) is an estimate of standard deviation proposed
»
July 25,1993
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£y S 3.363 1

Iy S 1.788 2 3

Figure 1: Pruned tree with 10-fold cross-validation for Poissan example.

I'he true model Is log(m) = ¢sin(£y = £4) + 2. The loglinear models in the
takniingl nionlee afe given hy lngli) = FU), § = d,4, %, where { denotes nole
number and f(3) = 5.117 — 1. 474z, + 2.2861r,, f(4) = —-0.534 + 1.789z, -

04072, atd f(5) = 1.146 + 0.2232, + 0.677 ¢,

by Fowlkes (1987), whose simulations suggest that the pseudo-residual

is approximately standard normal and independent of the fitted value

for large samples.

4. The pseudo-residual is used in place of the adjusted Anscombe residual

in the algorithm for Poisson regression trees.

3 Numerical examples

Two examples are given in this section to illustrate the algorithms. In the
first example, 100 independent (r;,r;) pairs are simulated, with r, and
z, independent uniformly distributed random variables over the intervals

(0,2r)and (0.2), respectively. For each pair, a Poisson response is generated

July 25, 1993
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with mean m given by
logm = 2sin(z, — £4) + I,.

A plot of m versus the regressors is shown in Figure 2(a). Applying our
Poisson tree algorithm with loglinear fits at each node and 10-fold cross-
validation pruning gives a tree with three-terminal nodes as shown in Fig-
ure 1. The corresponding piecewise-loglinear estimated surface is shown in
Figure 2(b). The fit is remarkably good, even though it is made up of three

separate pieces.

For the second example, we simulate 300 independent observation vec-
tors (Y;, X,1, Xin), ¢ = 1,....300, where X, and X,-g are uniformly and
independently distributed on the square (~1.5,1.5) x (~1.5,1.5),and ¥, is
Bernoulli with probability p; = P(Y; = 1) given by

log{pl/(l - P:)} =r,+ Sin(WI.'g).

A plot of p; versus z;; and z;, is shown in Figure 3. Figure 4 shows a tree
with six terminal nodes constructed by our logistic regression tree algorithm.
The fitted functions at the terminal nodes are log{p;(1 — p;)} = f(i), where

t denotes the node number and

f(4) = 1.391-0.492z, + 1.477z,,
f(6) = -0.184 - 0.076z, - 0.002z,,
f(8) = 0.706 + 0.962z, — 3.198z,,

f(9) = -6.420 - 0.855z, + 4.998z,,

July 25, 1993



11

&

True mean

Predicted mean

Figure 2: True and estimated surfaces for Poisson regression example. The
estimated surface is composed of three discontintous loglinear models.
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1 < -0032

Figure 4: Pruned tree for logistic regression example.
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Figure 5: Unsmoothed estimate of the function for logistic regression exam-
ple.
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Figure 6: Smoothed estimate of the function for logistic regression example.

—-3.218 + 0.147r, — 3.552zr,.,

1.279 4+ 1.399r, — 4.3111,.

The unsmoothed and smoothed function estimates are plotted in Figures 3
and 6. respectively. The smoothing is achieved by weighted averaging using

trapezoidal weights (see Lo {1993) for details).

4 Statistical properties of estimates: Some tech-

Assume that (Y;.X,).(Y2. .Xa)..... (Y..X,) are independent data points,

where the response Y, is real-valued and the regressor .X, is d-dimensional.

July 25. 1993
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As before, let f{y|g(z,)} be the conditional pdf/pmf of Y, given X, =
r,. We wish to estimate the function g over a compact set C C R?. Let
7, be a random partition of C' {i.e.. C = U,r.t), which is generated by
some adaptive recursive partitioning algorithm applied to the data. and it
is assumed to consist of polvhedrons having at most M (a fixed positive
integer) faces. We will denote the diameter of a set t € T, by 6(¢) (i.e..
6(t) = sup, ¢, | — yl). which will be assumed to be positive for each set
te T, Forte T,. X, will denote the average of the X,’s that belong to t.
Also, assuming that the function ¢ is m-th order differentiable (m > 0), let

us write its Taylor expansion around X, as

glz) =D _(u)'D*g(X)(x = X)¥ + rifr X))
uel’
Here U = {ulu = (v, va.. ... ve) [u] < m}. where [u] = v; + vy 4+ ..+ vy
and the v,’s are nonnegative integers. For u € {". D" is the mixed partial
differential operator with index u., u! = [T%., v,!. and for r = (2. =2, ... 24).
I = ﬂ:‘zl =+ (with the convention that 0' = | and 0" = 1). We impose the

following condition (cf. Condition (a}in Chaudhuri et al. (1993)) concerning

the behavior of the remainder term in the above Taylor expansion.
Condition 1 maxr, sup,e,{é(t)}‘"‘|r,(1.X’,)l foasn—x.

Observe that if g is continuously differentiable with derivatives up to
order m on an open set in R? that contains the compact set (' and the
diameters of the sets in T, shrink (i.e.. if sup, 7 _é(t) L 0) in probability as
n — x (cf. Condition (12.9) in Breiman et al. (19%4)). the above condition

automatically holds. However, even if some of the sets in T, do not shrink

July 25,1993




16

as n grows, Condition | may still be true. In any case, Condition 1 implies
that the function g can be uniformly well approximated by polynomials of
degree smaller than or equal to m on each of the sets in T, when n is large.

For © = (8,).¢r . let us define the polynomial P(r.©, X, in r as

P(r.0.X,) = 3 6. (u) et} hr - X,
uel’
Following the estimation procedure described in the previous sections, let
O, be the estimate obtained by applving the maximum likelihood technique

to the data points (},..X,) for which X, € t. In other words.

0, = arg max XIE(}’{Y.;P( N,.0 X0}
We will now state a couple of conditions concerning the distribution of the
X.'s in the regressor space. For X, € t. let T, be the ~{ ) dimensional
column vector with components given by (u')='{&(t)} "™ X, = X,)*, where
u € {". Here st} i> the size of the finite set {", which is defined earlier
Next, denote by D, the s{{") < s({") matrix defined as 3", ( I'I'T. where I'

indicates transpose.

Condition 2 Let .V, = the number of X,'s that belong to . and N, =

minger, {6(¢)}*™N,. Then N,/ logn £ x asn — x.

Condition 3 Let A, be the smallest eigenvalue of N7 'D, and let A, =
minr, Ar. Then A, remains bounded away from zero in probability as n —

x.

Clearly, Condition 2 ensures that there will be sufficiently many observa-

tions in each of the sets in T, (cf. Condition (12.8)in Breiman et al. ( 1984)
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and Condition (b) in Chaudhuri et al. (1993)). Condition 3. on the other
hand. guarantees that for large sample size. each of the matrices D,’s will be
nonsingular and nicely behaved (cf. Condition (¢) in Chaudhuri et al. (1993))
with a high probability. In a sense, it ensures regularity in the behavior of
the Fisher information matrix associated with the finite-dimensional model
fitted to the conditional distribution within each set in T,,. Note that we are
fitting a polynomial of a fixed degree with a finite number of coefficients to
the data points corresponding to any set in T,,.

Finally, we will state a Cramér-type regularity condition on the condi-
tional distribution of the response given the regressor. This condition is
absolutely crucial in establishing desirable asvmptotic behavior of our esti-

mates. which are constructed via maximum likelihood technique.

Condition 4 Let us view the pdf/pmf f(yls) as a function of two vart-
ables so that s becomes a real-valued parameter rarying in a hounded open
interval J. Here J s such that as r varies over some open set contain-
ing C. gir) takes uts values in J.  The support of fiylsi for any qiven
s & J 1s the same, and it does not depend on s. Also. tog{ fiy ~i} s three
times continuously differentiable w.r.t. s for any qreen value of y. and let
Alyis), Btyls) and H(y|s) be the first. second and third derivatives respec-
tively of log{ f(yl3)} w.r.t. s. The random rarwable A(Y s has zero mean.
and the mean of B(Y|s) 1s negative and stays away from zero as s rvaries
in J. Here Y has pdf/pmf f(yl~). and there erists a nonneqative function
K (y) which dominates each of Aly|s). Biyis) and Hiys) for all values of
s €J (re. [Ayls) < Kiy). Blyis) < Kiy) and "Hiyis)) < Ky, Fur-
ther. if M(w,s) denotes the moment generating function of KiY') defined

as M{w.s) = Elexp{wN(Y)}] with Y having pdf pmf fry ~0 Miw.os) re-
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mains bounded as w varies over an open interval around the origin and s

vartes over J.

It is appropriate to note here that Condition 1 is trivially satisfied when
the response Y is binary in nature. or more generally. when its conditional
distribution given the regressor is binomial. and « is the logit of the prob-
ability parameter such that the probability remains bounded away from 0
and 1. As a matter of fact. this condition will hold whenever the conditional
distribution of the response belongs to a standard exponential family (e.g .
binomial. Poisson. exponential. gamma. normal. etc.). and ~ is the natural
parameter taking values in a bounded interval. If fryls) happens to be a
location model with s behaving like a location parameter varving over a
bounded parameter space. Condition 4 remains true for several important
cases like the Cauchy or an exponential power distribution (see e g.. Box and
Tiao (1973)). In a sense. this condition can be viewed as an extension of
Condition (12.12) in Breiman et al. { 19%4) and Condition (d) in Chaudhuri

et al. (1993).

Theorem 1 Suppose that Conditions | through § hold. Then there 1s a
choice of the mazimum likelihood estimate ©, /possibly a local marimizer of

the likelihood) for every t € T, such that quven any u € U,

l;na.xsuplD"P(r.(:),..i',) - D*gir)| £0 asn—x.

€T. rEt

The above theorem guarantees that there exists a choice of the maximum
likelihood estimate @, for each t € T,, so that the resulting piecewise polyno-
mial estimates of the function g and its derivatives are all consistent. Now,

it can very well happen that the estimate @, is only a local maximizer of the
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likelihood instead of being a global maximizer. For instance, the likelihood
based on the data points corresponding to a set in T, may have multiple
maxima. However, when the conditional distribution of the response given
the regressor belongs to a standard exponential family, strict concavity of
the loglikelihood guarantees uniqueness of the maximum likelihood estimate
in large samples. .In the special case when we fit a constant (i.e., a polyno-
mial of degree zero) to the data points corresponding to each set in T, using
the maximum likelihood approach. Theorem 1 gives a useful generalization
of the coasistency result that holds for piecewise constant tree-structured
regression estimates discussed in Breiman et al. (1984). The piecewise poly-
nomial estimates of g and its derivatives are not continuous everywhere in
the regressor space. Smooth estimates, which can be constructed by com-
bining the polynomial pieces by means of smooth weighted averaging, will
be consistent provided the weight functions are chosen properly. Theorem 2
in Chaudhuri et al. (1993) describes a way of constructing families of smooth
weight functions that will give smooth and consistent estimates of g and its

derivatives.

5 Appendix: The proofs

We begin by proving some preliminary results that will be used in the proof .
of Theorem 1. Unless stated otherwise, all vectors are assumed to be column

vectors and a superscript T denotes transpose.

Lemma 1 Under Conditions !, 2 and 4, we have

V-1 -m . ” . ¢ X f. —
Erex%‘xN‘ {8(t)} x;‘ [A{Y:|P(X,,0;, X)}] T, Oasn —oo0.

July 25, 1993




20

Here O] is the s(U")-dimensional vector with a typical entry {6()}ID¥g( X,)
where u € U'. In other words, P(r.0;.X,) is nothing but the Taylor poly-

nomial of g(r) expanded around X,.

Proof. First observe that a straight forward application of the mean

value theorem of differential calculus yields the following

N S [A{YPIXL O] X0 T,

X, €t

= N7} Y [A{NIg( YO T,

X.€t
= N7HAOY™ Y {rd X XOB(YZ))T, (1)
X.€t

where Z, is a random variable that lies between P(X,. 09}, X,) and g(X,). In
view of Condition 4, the conditional mean of A{YIg(X)} given X = ris zero.
and if we denote its conditional moment generating function by M,(w{r).
there exist constants k;, > 0 and p, > 0 such that M, (w|r) < 2exp(k,u?/2)
for all z € C'and 0 < w < p, (see the arguments at the beginning of Lemma
12.27 in Breiman et al. (1984)). At this point. pretend that t is a fixed
non-random polyhedron in R?. all the data points X,’s that fall in ¢t form a
collection of deterministic points in C, and the corresponding A{Y,|g(X,)}'s
form a set of independent random variables such that the distribution of
A{Y,|g(X,)} is the same as the conditional distribution of it given .Y, in
the original problem. Note that T, is an s({’)-dimensional vector with each
component bounded in absolute value by 1. The arguments used in handling
the “variance term” in the proof of Theorem | in Chaudhuri et al. (1993)
imply that there exist constants k» > 0. k3 > 0 and p, > 0 (which depend

only on the compact set (", the integer s({) and the constants k,. p;) such
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that

PF({W)}""'\T1 Y AN,
X, €t

< kyexp[—ks{6(t)}*" ¥, p*]

s

< kyexp(—h3 N, p7),

whenever p < p,. Observe that the first inequality above is a consequence
of Lemma 12.26 in Breiman et al. {1984). which can be applied to each real-
valued component of the s({ )-dimensional vector that appears here. Recall
at this point that each set in T, is a polvhedron in R having at most M
faces. The fundamental combinatorial result of Vapnik and Chervonenkis
(1971) (Dudlev 1978, Section 7) now implies that there exists a collection
C of subsets of the set {X,,.X,....,X,} such that #(C) < (2n)¥4*? and
for any polvhedron with at most 3f faces. there is a set t* € (¢ with the
property that X, € ¢ if and only if X, € ¢*. Hence. even for a collection
like T, consisting of random polyhedrons generated by an adaptive recursive
partitioning algorithm. we must have the following exponential bound for
the conditional probability given the X,'s and T, \i.e.. after the sets in T,

are specified).

Pr (maxeer, {6(1)} ™ N7 1Ty o [A{ Vg XD > o] X1 X Xai Ta)

< (2n)MI DL, exp( —ky Nap?).

It now follows from Condition 2 that

! |
3 ANl XN Loasn — x .

s()) "N
r,r;ggc{ (1)} P
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For the second term on the right of (1). we have using Conditions 1, 2

and 4

Z {rl(‘\'l"(.')B(}’llzl)} rl

max .V He()} ™
g V)|

-m . i -1 -y
< [rlrégrf{b(t)} srlér‘)lr,(r..\.)l] {r];«}.f N XXE:! I\H.HF.I}
L tasn—x.
Note that we are using the fact that max,er, V' Y x.e NYIT,| remains

bounded in probability as n — x in view of the boundedness of the vectors
I'.’s and Conditions 2 and 4. In fact. if u(r) denotes the conditional mean
of K(Y) given X = r. arguments identical to those used in handling the
first term on the right of (1) yield

max .V, ! ]Z {K(Y)) - ;t(.\’.)}}l‘,ii £ oasn— x.

teTa
€ !X.er

This completes the proof of the lemma.

Lemma 2 Consider the s(U') x s(U') matrir

- NUS B{YIPX.L O] XY TLIT

X, €t

and let y(t) denote its smallest eigenvalue. Define 3, = miner, ~(t). Then,
under Conditions | through {. =, remains positie and bounded away from

zero in probability as n — x.
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Proof Once again. let us write using the mean value theorem of differ-

ential calculus

NOUY D B PINLOL N L]

X, €t
=D IRU:S TR I ST 15 B8 RSN Vet YR ) o o)
X. &t A€t
+ N e N X H Y T 2

N &t

i

where v(z) is the conditional mean of B{Y 4 X'} given X = r.and V] is
a random variable that falls between ¢ X,y and P1 X, 07, X1, Now it is
obvious from Conditions 3 and 4 thatof y, = nunger, golis where yotas the
smallest eigenvalue of the matrix -V, :\\e: e XL UT . then o, retuasns
positive and bounded away from zero in probability as n — x. Ou the
other hand. the first term on the right of 27 can be handled 1n the <ame

wayv as the first term on the richt of '+ 1jin the proof of Lemma 1 to vield

max N STUBY, Ny - e T R e =
=] : bl ’

° X ¢t
Note that the arguments. which explont Conditions 2 and and were appiied
to each component of the st { - dimensional vector appeaning as the hrst term
on the night of (1). can be easily modified for vach entry of the so {7« w07
matrix here. Finally, using conditions 1. 2 and 4. and arguments that are
virtually the same as those emploved to treat the second term on the right

of (1) 1n the proof of Lemma . we obtain the following result tor the third
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term on the right of (2):

max N Z{r,(.\',..(‘,)11();n;)}r,r_f‘|
€T X, €t |
< {rtré:%:(srtép‘ﬂr r. X, } {ma\ NS Zﬂ KNY)rrr |}

P
— 0Oasn— x.

This completes the proof of the lemma.

Proof of Theorem 1: First note that the assertion in the Theorem will
folow if we can show that there exist choices for the maximum likelihood
estimates O,'s such that

m‘}x{mt;}'"' 0, - O L asn — x

tel,

For t = I.. let L) denote the loglikelihood based on the observations
YN such that X, 20 That i L, 00 = 37, log f{)‘ PX,. 0N,

For 0 > 0. define the event E,ipas foillows E.opy = {000 v a conave
it can be locally concaver Sinetion ana neghiboriiood of OF warh radas
(At} p e for O satisfying {Act =" O =07 < poroandat has a mmaximun
(which ran be a local maximum f {0 ) has several maxima i the intenior
of this neighborhood } Note that the occurrence of this event ipues that
the maximum likelihood equation chtammed Ly ditferenniating o 00wt
© will have a root O, such that (Mt - 0] < opo Nowoa lavlor

expansion of [,(©) around ©; vields

(0O = L « S -0 T vy, PNl Y,
S _ :
L

Tniv 250 0993

X
»
*
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»
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+(12) Y 0 - 0TI B{Y, PN,.O.. X, 10 - 0])
A, €t
+(1/6) Y400 = O T Iy, ). (3
N, et

where IV is a random variable lying between P{X,.07. X,)and P(X,.0. X,
For the third termi on the right of (3). recall that the I,’s are bounded
vectors. Also. for © in a sufficiently small neighborhood of ©;. we have
Txoe HOYLWOI € Zx e MY) in view of Condition 4. It now follows
from Lemmas 1 and 2 and some of the arguments used in their proofs that

there exists p3 > 0 such that whenever p < p3, we must have

Pr{ ﬂ E,(p)} — lasn — x.

teT,

The proof of the theorem is now complete.
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